Metabolism of cancer and immune cells

Repas J, Frlic T, Snedec T, Kopitar AN, Sourij H, Janež A, Pavlin M. Physiologically Achievable Concentration of 2-Deoxy-D-Glucose Stimulates IFN-γ Secretion in Activated T Cells In Vitro. International Journal of Molecular Sciences. 2024; 25(19):10384. https://doi.org/10.3390/ijms251910384

Repas J, Peternel, Sourij H and Pavlin M, Low glucose availability potentiates the effects of metformin on model T cell activation and exhaustion markers in vitro. Front. Endocrinol.
Sec. Cancer Endocrinology Vol 14 – 2023 | https://www.frontiersin.org/articles/10.3389/fendo.2023.1216193/full

Kopitar AN, Repas J, Janžič L, Bizjak M, Tanjšek Vesel T, Emeršič N, Zajc Avramovič M, Ihan A, Avčin T and Pavlin M, Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrom (MIS-C). Frontiers in Immunology Vol 14, 2023 https://doi.org/10.3389/fimmu.2023.1157702

Janžič L,  Repas J,  Pavlin M, Zemljič-Jokhadar Š, Ihan A, Kopitar AN. Macrophage polarization during Streptococcus agalactiae infection is isolate specific. Frontiers in Microbiology. 2023 DOI:10.3389/fmicb.2023.1186087 https://www.frontiersin.org/articles/10.3389/fmicb.2023.1186087/full

Repas J, Zupin M, Vodlan M, Veranič P, Gole B, Potočnik U and Pavlin M. Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells,  Cancers 2022, 14(5), 1343. https://doi.org/10.3390/cancers14051343

Repas J, Zügner E, Gole B, Bizjak M, Potočnik U, Magnes C, Pavlin M. Metabolic profiling of attached and detached metformin and 2-deoxy-D-glucose treated breast cancer cells reveals adaptive changes in metabolome of detached cells. Scientific Reports 2021 Nov 1;11(1):21354. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560930/

Zemljič-Jokhadar Š, Kokot G, Pavlin M, Derganc J. Adhesion and Stiffness of Detached Breast Cancer Cells In Vitro: Co-Treatment with Metformin and 2-Deoxy-d-glucose Induces Changes Related to Increased Metastatic Potential. Biology (Basel). 2021 Sep 4;10(9):873. https://pubmed.ncbi.nlm.nih.gov/34571750/

Škorja Milić N, Dolinar K, Miš K, Matkovič U, Bizjak M, Pavlin M, Podbregar M, Pirkmajer S. Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α. Int J Mol Sci. 2021 Aug 10;22(16):8610. https://pubmed.ncbi.nlm.nih.gov/34445316/

Bizjak M, Malavašič P, Pirkmajer S, Pavin M. Comparison of the effects of metformin on MDA-MB-231 breast cancer cells in a monolayer culture and in tumor spheroids as a function of nutrient concentrations. Biochemical and biophysical research communications, doi: 10.1016/j.bbrc.2019.05.090,  https://www.sciencedirect.com/science/article/pii/S0006291X19309660?via%3Dihub

Dolinar K, Jan V, Pavlin M, Chibalin A, Pirkmajer S. Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. American journal of physiology, Cell physiology 2018, doi: 10.1152/ajpcell.00311.2017https://www.physiology.org/doi/abs/10.1152/ajpcell.00311.2017

Bizjak M, Malavašič P, Dolinar K, Pohar J, Pirkmajer S, Pavlin M. Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Scientific Reports 7:1761, 2017 http://www.nature.com/articles/s41598-017-01801-5

Rajh M, Dolinar K, Miš K, Pavlin M, Pirkmajer S. Medium renewal blocks anti-proliferative effects of metformin in cultured MDA-MB-231 breast cancer cells. PloS one, 2016 May 2;11(5):e0154747. doi: https://doi.org/10.1371/journal.pone.0154747

Nanobiotechnology

Pavlin M, Lojk J, Strojan K, Hafner-Bratkovič I, Jerala R, Leonardi A, Križaj I, Drnovšek N, Novak S, Veranič P, Bregar VB. The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity—In Vitro Correlation Analysis on THP-1 Macrophages. Int J Mol Sci. 2022; 23(11):6197. https://doi.org/10.3390/ijms23116197

Erman A, Kamenšek U, Dragin Jerman U, Pavlin M, Čemažar M, Veranič P, Romih R. How Cancer Cells Invade Bladder Epithelium and Form Tumors: The Mouse Bladder Tumor Model as a Model of Tumor Recurrence in Patients. Int J Mol Sci. 2021 Jun 13;22(12):6328.https://pubmed.ncbi.nlm.nih.gov/34199232/

Jerman UD, Višnjar T, Bratkovič IH, Resnik N, Pavlin M, Veranič P, Kreft ME. Attachment of Cancer Urothelial Cells to the Bladder Epithelium Occurs on Uroplakin-Negative Cells and Is Mediated by Desmosomal and Not by Classical Cadherins. Int J Mol Sci. 2021 May 25;22(11):5565. https://doi.org/10.3390/ijms22115565

Skočaj M, Bizjak M, Strojan K, Lojk J, Erdani Kreft M, Miš K, Pirkmajer S, Bregar VB, Veranič P, Pavlin M. Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. Int J Mol Sci. 2020 Oct 13;21(20):7545. https://www.mdpi.com/1422-0067/21/20/7545

Lojk J, Babič L, Sušjan P, Bregar VB, Pavlin M, Hafner-Bratkovič I, Veranič P. Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro. Int J Mol Sci. 2020 Sep 24;21(19):7030. https://pubmed.ncbi.nlm.nih.gov/32987760/

Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F; EU COST Action 16122 (BIONECA). In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol. 2020 Dec;22(6):1469-1488. https://link.springer.com/article/10.1007/s11307-019-01440-4

Lojk J, Repas J, Veranič P, Bregar VB, Pavlin M. Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology. 2020 Feb 28;432:152364. https://pubmed.ncbi.nlm.nih.gov/31927068/

Erman A, Kapun G, Novak S, Pavlin M, Dražič G, Drobne D, Veranič P. eter. How cancer cells attach to urinary bladder epithelium in vivo : study of the early stages of tumorigenesis in an orthotopic mouse bladder tumor model. Histochemistry and cell biology, ISSN 0948-6143, Mar. 2019, vol. 151, iss. 3, str. 263-273  https://link.springer.com/content/pdf/10.1007%2Fs00418-018-1738-x.pdf

Lojk J, Bregar VB, Strojan K, Hudoklin S, Veranič P, Pavlin M, Erdani-Kreft M. Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochemistry and cell biology, 2018;149(1):45-59 DOI: https://doi.org/10.1007/s00418-017-1605-1,  https://link.springer.com/article/10.1007%2Fs00418-017-1605-1

Lojk J, Strojan K, Miš K, Bregar VB, Hafner Bratkovič I, Bizjak M, Pirkmajer S, Pavlin M. Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicology letters, 2017, vol. 270, str. 108-118 http://www.sciencedirect.com/science/article/pii/S0378427417300589

Strojan K, Lojk J, Bregar VB, Erdani-Kreft M, Svete J, Veranič P, Pavlin M. In vitro assessment of potential bladder papillary neoplasm treatment with functionalized polyethyleneimine coated magnetic nanoparticles. Acta chimica slovenica, 2017, 64(3):543-548  https://journals.matheo.si/index.php/ACSi/article/view/2876/1249

Lojk J, Prpar Mihevc S, Bregar VB, Pavlin M, Rogelj B. The effect of different types of nanoparticles on FUS and TDP-43 solubility and subcellular localization. Neurotoxicity research, 2017, vol. , 1-15, http://link.springer.com/article/10.1007/s12640-017-9734-9

Strojan K, Lojk J, Bregar VB, Veranič P, Pavlin M. Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells. Toxicology in vitro, 2017, vol. 41, str. 12-20, http://www.sciencedirect.com/science/article/pii/S0887233317300292

Strojan K, Leonardi A, Bregar VB, Križaj I, Svete J, Pavlin M. Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona, PLOS ONE, 2017, 12(1): e0169552.  http://dx.doi.org/10.1371/journal.pone.0169552

Lojk J, Čibej U, Karlaš D, Šajn L, Pavlin M. Comparison of two automatic cell-counting solutions for fluorescent microscopic images. Journal of Microscopy, 2015, vol. 260, str. 107-116, http://onlinelibrary.wiley.com/doi/10.1111/jmi.12272/epdf

Lojk J, Bregar VB, Rajh M, Miš K, Erdani-Kreft M, Pirkmajer S, Veranič P, Pavlin M. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles. International journal of nanomedicine, 2015, vol. 10, str. 1449-1462 http://www.dovepress.com/cell-type-specific-response-to-high-intracellular-loading-of-polyacryl-peer-reviewed-article-IJN

Bregar VB, Lojk J, Šuštar V, Veranič P, Pavlin M. Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate. International journal of nanomedicine, 2013, vol. 8, str. 919-931 http://www.dovepress.com/visualization-of-internalization-of-functionalized-cobalt-ferrite-nano-peer-reviewed-article-IJN

Pavlin M, Bregar VB. Stability of nanoparticle suspensions in different biologically relevant media. Digest Journal of Nanomaterials and Biostructures, 2012, vol. 7,1389-1400  https://chalcogen.ro/1389_Bregar.pdf

Prijič S, Prosen L, Čemažar M, Ščančar J, Romih R, Lavrenčak J, Bregar VB, Coer A, Kržan M, Žnidaršič A, Serša G. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials, 2012, vol. 33, 4379-4391, https://reader.elsevier.com/reader/sd/pii/S0142961212002669?token=E53B1D7AD628624BBC85723473068BAAC2F511BD72E178D71BED61BC250C68669F38EA6113DD6E46D6C3A872DFD028A4&originRegion=eu-west-1&originCreation=20220210143146

Prijič S, Ščančar J, Romih R, Čemažar M, Bregar VB, Žnidaršič A, Serša G. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. The journal of membrane biology 2010, vol. 236, 167-179, doi: 10.1007/s00232-010-9271-4

Bregar VB. Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Trans. Mag., vol. 40, 1679-1684, May 2004. doi:10.1109/TMAG.2004.826622. https://ieeexplore.ieee.org/document/1298944

 

Gene electrotransfer and cell electroporation

Ušaj M, Pavlin M & Kandušer M. Feasibility Study for the Use of Gene Electrotransfer and Cell Electrofusion as a Single-Step Technique for the Generation of Activated Cancer Cell Vaccines. J Membrane Biol (2024). https://doi.org/10.1007/s00232-024-00320-5

Pavlin M, Škorja Milić N, Kandušer M, Pirkmajer S. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes. BioMed Eng OnLine 23, 47 (2024). https://doi.org/10.1186/s12938-024-01239-7

Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online. 2021 Aug 21;20(1):85. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-021-00922-3

Pavlin M and Kandušer M. New insights into the mechanisms of gene electrotransfer – experimental and theoretical analysis. Scientific reports, 2015, 5: 1-11 http://www.nature.com/srep/2015/150316/srep09132/full/srep09132.html

Lojk J, Miš K, Pirkmajer S, Pavlin M. siRNA delivery into cultured primary human myoblasts – optimization of electroporation parameters and theoretical analysis. Bioelectromagnetics, 2015, 36: 551-563 http://onlinelibrary.wiley.com/doi/10.1002/bem.21936/abstract

Marš T, Stražišar M, Miš K, Katarina P, Kotnik N, Pegan K, Lojk J, Grubič  Z, Pavlin M. Electrotransfection and lipofection show comparable efficiency for In vitro gene delivery of primary human myoblasts. The journal of membrane biology, 2015, 248: 273-283 https://link.springer.com/article/10.1007%2Fs00232-014-9766-5

Haber Meglič  S, Kandušer M, Flisar K, Hodžić D, Bregar VB, Miklavčič D, Escoffre JM, Rols MP, Pavlin M. Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. The journal of gene medicine, 2013, 15: 169-181 http://onlinelibrary.wiley.com/doi/10.1002/jgm.2706/pdf

Pavlin M, Pucihar G, Kandušer M. The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry, 2012, 83: 38-44 https://link.springer.com/chapter/10.1007/978-3-642-13039-7_171

Faurie C, Reberšek M, Golzio M, Kandušer M, Escoffre JM, Pavlin M, Teissié J, Miklavčič D, Rols MP. Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J. Gene Med. 12: 117-125, 2010.  http://onlinelibrary.wiley.com/doi/10.1002/jgm.1414/abstract

Haberl S, Pavlin M. Use of collagen gel as a three-dimensional in vitro model to study electropermeabilization and gene electrotransfer. J. Membrane Biol. 236: 87-95, 2010.  https://link.springer.com/article/10.1007/s00232-010-9280-3

Marjanovič I, Haberl S, Miklavčič D, Kandušer M, Pavlin M. Analysis and comparison of electrical pulse parameters for gene electrotransfer of two different cell lines. J. Membrane Biol. 236: 97-105, 2010. https://link.springer.com/article/10.1007%2Fs00232-010-9282-1

Haberl S, Miklavčič D, Pavlin M. Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization. Bioelectrochemistry 79: 265-271, 2010. http://www.sciencedirect.com/science/article/pii/S156753941000068X

Pavlin M, Flisar K, Kandušer M. The role of electrophoresis in gene electrotransfer. J. Membrane Biol. 236: 75-79, 2010.  https://link.springer.com/article/10.1007/s00232-010-9276-z

Županič A, Čorović S, Miklavčič D, Pavlin M. Numerical optimization of gene electrotransfer into muscle tissue. Biomed. Eng. Online 9: 66, 2010. http://www.biomedical-engineering-online.com/content/9/1/66

Kandušer M, Miklavčič D, Pavlin M. Mechanisms involved in gene electrotransfer using high- and low-voltage pulses – an in vitro study. Bioelectrochem. 74: 265-271, 2009. http://www.sciencedirect.com/science/article/pii/S1567539408001515

Pavlin M, Miklavčič D. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation – relation between short-lived and long-lived pores. Bioelectrochem. 74: 38-46, 2008.  http://www.sciencedirect.com/science/article/pii/S1567539408000698?via%3Dihub

Pavlin M, Leben V, Miklavcic D. Electroporation in dense cell suspension–theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochim Biophys Acta. 2007 Jan;1770(1):12-23. doi: 10.1016/j.bbagen.2006.06.014. https://pubmed.ncbi.nlm.nih.gov/16935427/

Čorović S, Pavlin M, Miklavčič D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed. Eng. Online 6 : 1-14, 2007. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations | BioMedical Engineering OnLine | Full Text (biomedcentral.com)

Pavlin M, Kandušer M, Reberšek M, Pucihar G, Hart FX, Magjarević R, Miklavčič D. Effect of cell electroporation on the conductivity of a cell suspension. Biophys. J. 88: 4378-4390, 2005.

Valič B, Pavlin M, Miklavčič D. The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochemistry 63: 311-315, 2004.

Valič B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissié J, Rols MP, Miklavčič D. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur. Biophys. J. 32: 519-528, 2003.

Pavlin M, Miklavčič D. Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. Biophys. J. 85: 719-729, 2003

Pavlin M, Pavselj N, Miklavčič D. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49: 605-612, 2002.

Pavlin M, Slivnik T, Miklavčič D. Effective conductivity of cell suspensions. IEEE T. Biomed. Eng. 49: 77-80, 2002.

 

Numerical modelling for industrial applications

Strauch L, Pavlin M, BREGAR, Bregar VB. Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer. International journal of applied electromagnetics and mechanics, ISSN 1383-5416, 2015, vol. 49: 145-155,  doi: 10.3233/JAE-150029.

Drnovšek B, Bregar VB, Pavlin M. Numerical study of effective permeability of soft-magnetic composites with conductive inclusions. J. Appl. Phys. 105: 07D546 , 2009 https://aip.scitation.org/doi/abs/10.1063/1.3081380

Drnovšek B, Bregar VB, Pavlin M. The effect of complex permeability and agglomeration on composite magnetic systems : a three-dimensional numerical analysis and comparison with analytical models. Journal of applied physics, 2008, vol. 103, no. 7: 07D9241/1-3 https://aip.scitation.org/doi/10.1063/1.2839580

Bregar VB, Žnidaršič A, Lisjak D, Drofenik M. Development and characterisation of an electromagnetic absorber = Razvoj in karakterizacija elektromagnetnega absorberja. Materiali in tehnologije 2005, 39, 89-93

Bregar VB. Effective-medium approach to the magnetic susceptibility of composites with ferromagnetic inclusions. Physical review. B, Condensed matter and materials physics, 2005, vol. 71, 174418-1-174418-8. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.174418

Bregar B, Pavlin M. Effective-susceptibility tensor for a composite with ferromagnetic inclusions : enhancement of effective-media theory and alternative ferromagnetic approach. J. Appl. Phys., 2004, vol. 95, 6289-6293. https://ui.adsabs.harvard.edu/abs/2004JAP….95.6289B/abstract

 

Book chapters

Pavlin M, Zupančič D, Lojk J, Strojan K, Erdani-Kreft M. Multimodal magnetic nanoparticles for biomedical applications: importance of characterization on biomimetic in vitro models. Materials for biomedical engineering : inorganic micro- and nanostructures. 1st ed. Amsterdam; Oxford; Cambridge: Elsevier. 2019, p. 241-283,  https://www.sciencedirect.com/science/article/pii/B9780081028148000093

Pavlin M and Kandušer M. Gene electrotransfer : from understanding the mechanisms to optimization of parameters in tissues. V: IGLIČ, Aleš (ur.). Advances in planar lipid bilayers and liposomes, (Advances in planar lipid bilayers and liposomes, ISSN 1554-4516, vol. 15). Amsterdam [etc.]: Elsevier: Academic Press, 2012, str. 77-104, http://dx.doi.org/10.1016/B978-0-12-396533-2.00001-X.

Pavlin M, Kotnik T, Miklavčič D, Kramar P, Maćek-Lebar A. Electroporation of planar lipid bilayers and membranes. V: OTTOVA-LEITMANNOVA, Angelica (ur.). Advances in planar lipid bilayers and liposomes. Vol. 6. Amsterdam [etc.]: Academic Press, Elsevier Science, cop. 2008, str. 165-226